Trigonometric Functions

- If in a circle of radius r, an arc of length l subtends an angle of θ radians, then $l = r\theta$. Radian measure $=\frac{\pi}{180} \times Degree measure$
- Degree measure = $\frac{180}{\pi}$ ×Radian measure
- A degree is divided into 60 minutes and a minute is divided into 60 seconds. One sixtieth of a degree is called a minute, written as 1', and one sixtieth of a minute is called a second, written as1".

Thus, $1^{\circ} = 60'$ and 1' = 60''

Signs of trigonometric functions in different quadrants:

Trigonometric function	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
sin x	+ ve (Increases from 0 to 1)	+ ve (Decreases from 1 to 0)	-ve (Decreases from 0 to 🛚 1)	-ve (Increases from 🛮 1 to 0)
cos x	+ ve (Decreases from 1 to 0)	-ve (Decreases from 0 to ☑1)	-ve (Increases from 🛮 1 to 0)	+ ve (Increases from 0 to 1)
tan x	+ ve (Increases from 0 to ∞)	-ve (Increases from ②∞ to 0)	+ ve (Increases from 0 to ∞)	-ve (Increases from ②∞ to 0)
cot x	+ ve (Decreases from ∞ to 0)	-ve(Decreases from 0 to ②∞)	+ ve (Decreases from ∞ to 0)	-ve (Decreases from 0 to ②∞)
sec x	+ ve (Increases from 1 to ∞)	-ve (Increases from 2∞ to 21)	–ve (Decreases from ½1 to ½∞)	+ ve (Decreases from ∞ to 1)
cosec x	+ ve (Decreases from ∞ to 1)	+ ve (Increases from 1 to ∞)	-ve (Increases from ②∞ to ②1)	–ve (Decreases from ②1 to ②∞)

Example 1:

$$\sin \theta = -\frac{1}{\sqrt{3}}$$
, where $\pi < \theta < \frac{3\pi}{2}$, then find the value of $3 \tan \theta - \sqrt{3} \sec \theta$.

Solution: Since θ lies in the third quadrant, therefor tan θ is positive and $\cos \theta$ (or $\sec \theta$) is negative.

$$\cos^2\theta + \sin^2\theta = 1$$

$$\Rightarrow$$
 cos $\theta = \pm \sqrt{1 - \sin^2 \theta}$

$$\Rightarrow \cos\theta = \pm \sqrt{1 - \left(-\frac{1}{\sqrt{3}}\right)^2} = \pm \sqrt{1 - \frac{1}{3}} = \pm \sqrt{\frac{2}{3}}$$

$$\therefore \cos \theta = -\sqrt{\frac{2}{3}}$$

⇒
$$\sec \theta = -\sqrt{\frac{3}{2}}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{1}{\sqrt{3}}}{-\sqrt{\frac{2}{3}}} = \frac{1}{\sqrt{2}}$$

∴ 3 tan
$$\theta - \sqrt{3} \sec \theta = 3 \times \frac{1}{\sqrt{2}} - \sqrt{3} \times \left(-\sqrt{\frac{3}{2}} \right) = \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}} = 3\sqrt{2}$$

Example 2: Find the value of $\cos 390\mathbb{Z} \cos 510\mathbb{Z} + \sin 390\mathbb{Z} \cos (-660\mathbb{Z})$.

Solution:

$$\cos 390^{\circ} = \cos (2 \times 180^{\circ} + 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos 510^{\circ} = \cos (3 \times 180^{\circ} - 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\sin 390^\circ = \sin (2 \times 180^\circ + 30^\circ) = \sin 30^\circ = \frac{1}{2}$$

$$\cos(-660^\circ) = \cos 660^\circ = \cos (4 \times 180^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2}$$

$$= \frac{\sqrt{3}}{2} \times \left(-\frac{\sqrt{3}}{2} \right) + \left(\frac{1}{2} \right) \times \left(\frac{1}{2} \right)$$

$$=-\frac{3}{4}+\frac{1}{4}$$

$$=-\frac{2}{4}$$

$$=-\frac{1}{2}$$

• Domain and Range of trigonometric functions:

Trigonometric function	Domain	Range
sin x	R	[-1, 1]
cos x	R	[-1, 1]
tan <i>x</i>	$\mathbf{R} - \left\{ X : X = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R
cot x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R
sec x	$\mathbf{R} - \left\{ x : x = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R - [-1, 1]
cosec x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R - [-1, 1]

• Trigonometric identities and formulas:

$$\csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

$$\cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\cos (2n\pi + x) = \cos x, n \in \mathbb{Z}$$

$$\sin(2n\pi + x) = \sin x, n \in \mathbb{Z}$$

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$cos(x - y) = cos x cos y + sin x sin y$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos(\pi - x) = -\cos x$$

$$\sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x$$

$$\sin(\pi + x) = -\sin x$$

$$\cos(2\pi - x) = \cos x$$

$$\sin(2\pi - x) = -\sin x$$

If none of the angles x, y and $(x \pm y)$ is an odd multiple of $\frac{\pi}{2}$, then

$$\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \text{ and } \tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

o If none of the angles x, y and $(x \pm y)$ is a multiple of π , then $\cot(x + y) = \frac{\cot x \cot y - 1}{\cot y + \cos x}$, and $\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = 1 - 2\sin^2 \frac{x}{2} = \frac{1 - \tan^2 x}{1 + \tan^2 \frac{x}{2}}$$
In particular.

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = 1 - 2\sin^2 \frac{x}{2} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$

o In particular,

$$\sin 2x = 2\sin x \cos x = \frac{2\tan x}{1+\tan^2 x}$$

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$$
In particular,
$$\tan 2x = \frac{2\tan x}{1-\tan^2 x}$$

In particular,

General solutions of some trigonometric equations:

- $\sin x = 0 \Rightarrow x = n \pi$, where $n \in \mathbb{Z}$ $\cos x = 0 \Rightarrow x = (2n + 1) \frac{\pi}{2}$, where $n \in \mathbb{Z}$
- $\sin x = \sin y \Rightarrow x = n\pi + (-1)^n y$, where $n \in \mathbf{Z}$
- $\cos x = \cos y \Rightarrow x = 2n\pi \pm y$, where $n \in \mathbf{Z}$
- $\tan x = \tan y \Rightarrow x = n\pi + y$, where $n \in \mathbf{Z}$

Example 1: Solve $\cot x \cos^2 x = 2 \cot x$

Solution:

$$\cot x \cos^2 x = 2 \cot x$$

$$\Rightarrow$$
 cot \times cos² \times - 2cot \times = 0

$$\Rightarrow \cot x (\cos^2 x - 2) = 0$$

$$\Rightarrow$$
 cot $x = 0$ or $\cos^2 x = 2$

$$\Rightarrow \frac{\cos x}{\sin x} = 0 \text{ or } \cos x = \pm \sqrt{2}$$

$$\Rightarrow$$
 cos $x = 0$ or cos $x = \pm \sqrt{2}$

Now,
$$\cos x = 0 \Rightarrow x = (2n+1)\frac{\pi}{2}$$
, where $n \in \mathbb{Z}$

and
$$\cos x = \pm \sqrt{2}$$

But this is not possible as $-1 \le \cos x \le 1$

Thus, the solution of the given trigonometric equation is $x = (2n + 1)\frac{\pi}{2}$ where $n \in \mathbb{Z}$.

Example 2: Solve $\sin 2x + \sin 4x + \sin 6x = 0$.

Solution:

$$\sin 4x + (\sin 2x + \sin 6x) = 0$$

$$\Rightarrow \sin 4x + 2\sin\left(\frac{2x+6x}{2}\right)\cos\left(\frac{2x-6x}{2}\right) = 0$$

$$\Rightarrow$$
 sin 4x + 2 sin 4x cos 2x = 0

$$\Rightarrow \sin 4x(1+2\cos 2x)=0$$

$$\Rightarrow$$
 sin $4x = 0$ or $1 + 2\cos 2x = 0$

$$\Rightarrow \sin 4x = 0 \text{ or } \cos 2x = -\frac{1}{2}$$

$$\sin 4x = 0$$

$$\Rightarrow 4x = n\pi, n \in \mathbb{Z}$$

$$\Rightarrow x = \frac{n\pi}{4}, n \in \mathbb{Z}$$

$$\cos 2x = -\frac{1}{2}$$

$$\Rightarrow \cos 2x = \cos \frac{2\pi}{3}$$

$$\Rightarrow 2x = 2m\pi \pm \frac{2\pi}{3}, m \in \mathbb{Z}$$

$$\Rightarrow x = m\pi \pm \frac{\pi}{3}, m \in \mathbb{Z}$$

Thus,
$$x = \frac{n\pi}{4}$$
 or $x = m\pi \pm \frac{\pi}{3}$, where $m, n \in \mathbf{Z}$